Cybersecurity Educational Standards

Stephen Cooper, Stanford University
Elizabeth Hawthorne, Union County College
Lance C. Pérez, University of Nebraska - Lincoln
Susanne Wetzel, Stevens Institute of Technology
Background

• In response to the White House’s 60-day Cybersecurity Review, information assurance (IA) education assumed renewed priority at DHS, NSA, and NSF
 o DHS – interested in an Essential Body of Knowledge (www.us-cert.gov/ITSecurityEBK/)
 o NSA/DHS – co-owners of the CAE designation
 o DoD – Information Assurance Scholarship Program
 o NSF – Scholarship For Service Program

• Fundamental Question
 o Are U.S. IA educational programs sufficient to meet the emerging needs of industry or government?
Additional Questions

• Is the CAE/IAE designation appropriate for all institutions offering IA educational programs?
• What is the source and history of IA training and educational efforts?
• Is there enough coherence between existing IA educational efforts to consider developing a BoK?
• What is the variety of IA degree programs at different institutions (2-year, 4-year, graduate)?
ITiCSE “Working Groups”

• “working group”
 o term used by ITiCSE for small groups examining a particular question
 o different from standards working groups, e.g., ACM, IEEE, ANSI, NIST, etc.

• NSF funded a series of three “working groups”:
 o ITiCSE 2009 “An Exploration of the Current State of Information Assurance Education”
 o ITiCSE 2010 “Towards Information Assurance (IA) Curricular Guidelines”
 o ITiCSE 2011 “Information Assurance Education in Two and Four-Year Institutions”

NICE workshop September 21, 2011
2009 ITiCSE

An Exploration of the Current State of Information Assurance Education
Members

- Steve Cooper, leader
- Christine Nickel, co-leader
- Victor Piotrowski
- Brenda Oldfield
- Ali Abdallah
- Matt Bishop
- Bill Caelli
- Melissa Dark
- Elizabeth Hawthorne
- Lance Hoffman
- Lance C. Pérez
- Charles Pfleeger
- Richard Raines
- Corey Schou
- Joel Brynielsson
Charge

• Explore and document the space of various existing IA educational standards and guidelines
• Examine these standards and guidelines in the context of other curricular guidelines in computing
Some Documents Examined

- Information Technology 2008, Curriculum Guidelines for Undergraduate Degree Programs in Information Technology
- Software Engineering 2004, Curriculum Guidelines of Undergraduate Degree Programs in Software Engineering
 http://sites.computer.org/ccse
- The CORE Body of Knowledge for Information Technology Professionals
- Computing Curricula 2009: Guidelines for Associate-Degree Transfer Curriculum in Computer Science
 http://www.acmtyc.org/WebReports/CSreport/
- CAE Program Requirements http://www.nsa.gov/ia/academic_outreach/nat_cae/cae_iae_program_criteria.shtml

NICE workshop September 21, 2011
Outcomes

• Historical context for IA
• Review of assessment and accreditation practices of current education
• IA is a discipline in its own right
Findings

• Need for governing body (e.g., ACM or IEEE) to develop educational guidelines (2-year, 4-year and graduate levels)

• Facilitation of articulation from the lower academic division (associate degree) into the upper academic division (baccalaureate degree)

• Government, industry and academia must work together to increase the IA faculty pipeline
Towards Information Assurance (IA) Curricular Guidelines
Members

- Steve Cooper, leader
- Christine Nickell, co-leader
- Lance C. Pérez, co-leader
- Brenda Oldfield, co-leader
- Joel Brynielsson
- Asım Gençer Gökce
- Beth Hawthorne
- Karl Klee
- Andrea Lawrence
- Susanne Wetzel

NICE workshop September 21, 2011
Charge

• Explore the feasibility of defining a body of knowledge (BoK) for IA education
• Demonstrate the feasibility of defining appropriate and comprehensive student learning outcomes for a sample subject in the proof-of-concept BoK for IA education
Starting Point

• Survey:
 o Based on the ten CISSP knowledge domains
 o Sent to all CAE-IAE/CAE-R/CAE2Y institutions during CISSE and left open up to ITiCSE 2010
 o Approximately 30 responses
Survey of IA Areas

• Fundamental Concepts
• Cryptography
• Security Ethics
• Security Policy
• Digital Forensics
• Access Control
• Security Architecture and Systems
• Network Security
• Risk Management
• Attacks/Defenses
• Secure Software Design and Engineering
• Operational Issues
Outcomes

• Survey results
 o Areas comprehensive
 o Some differences (current vs. ideal):
 – Increase: Ethics; Policy; Digital Forensics; Secure Software Design and Engineering
 – Decrease: Network Security; Attacks/Defense; Access Control
 o Operational Issues was absorbed into other areas
Outcomes Continued

- Determined sample subjects within each area of the proof-of-concept BoK, e.g.,
 - Secure Software Design and Engineering
 - Secure Software Specification
 - Secure Coding
 - Secure Testing
 - Program verification and simulation
 - Language-based Security
 - Secure Design
 - Maintenance
Outcomes Continued

• Sample description for sample subject Secure Coding based on student learning outcomes:
 – Detailed description of topics:
 • Quick definition
 • Key principles
 • Examples/common issues
 – Use verbs from Bloom’s Taxonomy (from AS CS Degree Transfer document) to specify learning outcomes
 – Categorize outcomes as core or elective
 – Add assessment rubric for learning outcomes
 – Mapping of outcomes to topics

NICE workshop September 21, 2011
Findings

• International community should define a BoK based on student learning outcomes
• International community should define location of programs w.r.t. various disciplines
• International community should define pathways, especially between 2-year colleges and 4-year institutions
2011 ITiCSE

IA Education at Two- and Four-Year Institutions
Members

- Lance C. Pérez, leader
- Stephen Cooper, co-leader
- Elizabeth Hawthorne, co-leader
- Susanne Wetzel, co-leader
- Joel Brynielsson
- Asım Gençer Gökce
- John Impagliazzo
- Youry Khmelevsky
- Karl Klee
- Margaret Leary
- Amelia Philips
- Norbert Pohlman
- Blair Taylor
- Shambhu Upadhyaya
Charge

• Identify examples of undergraduate IA curricula
 – two- and four-year level
 – both within and outside the U.S.
• Identify articulation challenges
• Provide recommendations for moving forward
IA Education Outside the U.S.

- Few equivalent to U.S. associate-degree programs
- Most IA programs reside at the post-graduate level
- Examined 7 baccalaureate degree programs
Non-U.S. Bachelor Degree Programs

<table>
<thead>
<tr>
<th>Country</th>
<th>Institution</th>
<th>Bachelor Program Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>Seneca</td>
<td>Informatics and Security</td>
</tr>
<tr>
<td>Germany</td>
<td>Bochum</td>
<td>IT Security</td>
</tr>
<tr>
<td>Germany</td>
<td>Offenburg</td>
<td>IT Security</td>
</tr>
<tr>
<td>Malaysia</td>
<td>University of Technology Malaysia</td>
<td>Computer Network Security</td>
</tr>
<tr>
<td>Russia</td>
<td>Moscow Institute of Physics and Technology (MFTI) – PhysTech</td>
<td>Informatics and Security</td>
</tr>
<tr>
<td>Sweden</td>
<td>Blekinge</td>
<td>Security Engineering</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>East London</td>
<td>Information Security Systems</td>
</tr>
</tbody>
</table>
IA Education at 4-Year U.S. Colleges

• 73 CAE institutions offer baccalaureate degrees with IA concentration or minors
 – 42 in CS departments
 – 16 in CIS departments
 – 6 in Security departments
 – 5 in IT departments
 – 4 in Informatics schools/departments
 – 3 in Electrical and Computer Engineering departments
 – 1 in Software Engineering department
 – 1 in Criminal Justice department
<table>
<thead>
<tr>
<th>Institution</th>
<th>Degree Type</th>
<th>Program Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Towson University (CAE/IAE)</td>
<td>BS</td>
<td>Computer Science with a Security Track</td>
</tr>
<tr>
<td>Kennesaw State University (CAE/IAE)</td>
<td>BS</td>
<td>Information Security and Assurance</td>
</tr>
<tr>
<td>Rochester Institute of Technology (CAE/IAE)</td>
<td>BS</td>
<td>Information Security and Forensics</td>
</tr>
<tr>
<td>Stevens Institute of Technology (CAE/IAE, CAE-R)</td>
<td>BS</td>
<td>Cybersecurity</td>
</tr>
<tr>
<td>Mercy College, New York</td>
<td>BS</td>
<td>Cybersecurity</td>
</tr>
<tr>
<td>Pennsylvania College of Technology</td>
<td>BS</td>
<td>Information Technology</td>
</tr>
<tr>
<td>University of Wilmington</td>
<td>BS</td>
<td>Computer and Network Security</td>
</tr>
<tr>
<td>University of Texas, San Antonio (CAE/IAE, CAE-R)</td>
<td>BBA</td>
<td>Infrastructure Assurance</td>
</tr>
<tr>
<td>Oklahoma State University Institute of Technology</td>
<td>BT</td>
<td>Information Assurance and Forensics</td>
</tr>
</tbody>
</table>
IA Education at 2-Year U.S. Colleges

• 16 programs examined
 o 14 AAS degree programs
 • workforce-oriented
 o 2 AS degree programs
 • transfer-oriented

• Combination of CAE2Y and non-CAE2Y
Associate-degree Programs Examined

<table>
<thead>
<tr>
<th>Institution</th>
<th>Degree Type</th>
<th>Program Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owens Community College (CAE2Y)</td>
<td>AAB</td>
<td>System Security and Information Assurance</td>
</tr>
<tr>
<td>Anne Arundel Community College (CAE2Y)</td>
<td>AAS</td>
<td>Information Assurance and Cybersecurity</td>
</tr>
<tr>
<td>The Community College of Baltimore County (CAE2Y)</td>
<td>AAS</td>
<td>Information Systems Security</td>
</tr>
<tr>
<td>Ashville Buncomb Technical Community College</td>
<td>AAS</td>
<td>Information Systems Security</td>
</tr>
<tr>
<td>Craven Community College</td>
<td>AAS</td>
<td>Information Systems Security</td>
</tr>
<tr>
<td>Gwinnett Technical College</td>
<td>AAS</td>
<td>Information Security Specialist</td>
</tr>
<tr>
<td>Bossier Parish Community College</td>
<td>AAS</td>
<td>Information Network Security Specialist</td>
</tr>
<tr>
<td>Northern Virginia Community College</td>
<td>AAS</td>
<td>Information Systems Technology with a Network Security</td>
</tr>
</tbody>
</table>

NICE workshop September 21, 2011
Associate-Degree IA Programs cont’d

<table>
<thead>
<tr>
<th>Institution</th>
<th>Degree Type</th>
<th>Program Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whatcom Community College (CAE2Y)</td>
<td>AS Technical</td>
<td>Computer Information Systems with a Network Security concentration</td>
</tr>
<tr>
<td>Highline Community College</td>
<td>AAS</td>
<td>Networking Specialist</td>
</tr>
<tr>
<td>Highline Community College</td>
<td>AAS</td>
<td>Data Recovery/ Forensics Specialist</td>
</tr>
<tr>
<td>Hagerstown Community College (CAE2Y)</td>
<td>AAS</td>
<td>Information Systems Technology with a Computer Forensics concentration</td>
</tr>
<tr>
<td>Broome Community College</td>
<td>AAS</td>
<td>Computer Security and Forensics</td>
</tr>
<tr>
<td>Oklahoma City Community College (CAE2Y)</td>
<td>AAS</td>
<td>Computer Science Cyber/Information Security concentration</td>
</tr>
<tr>
<td>Oklahoma City Community College (CAE2Y)</td>
<td>AS</td>
<td>Computer Science Cyber/Information Security University Parallel</td>
</tr>
<tr>
<td>Harrisburg Area Community College</td>
<td>AS</td>
<td>Computer Information Security</td>
</tr>
</tbody>
</table>

NICE workshop September 21, 2011
IA Education at 2-Year U.S. Colleges

• Two examples of AAS degrees
 o Network Security
 o Digital Forensics
AAS IA degree - Network Security
(66 credits)

Technical
Ethics
Supporting
General Education

Network
Fundamentals
Digital Forensics
Capstone

NICE workshop September 21, 2011
AAS IA degree - Digital Forensics (65 credits)

- Criminal Justice
- Technical
- Security
- General Education
- Supporting

NICE workshop September 21, 2011
AS designed to transfer into BS
Computer Science with a IA track
(65 credits)
Findings

• Articulation Challenges for AAS programs
 – Insufficient math and science
 – Level of technical courses
• Few AAS degree programs transfer into applied BS degree programs
• AS degree programs transfer into BS “CS with IA track” degree programs
Findings Continued

• Increasing variety of IA degree programs at each education level

• Articulation between 2-year and 4-year degree programs still challenging
Summary and Recommendations

• A sequence of three ACM ITiCSE working groups explored
 – The history of IA education
 – The feasibility of defining a BoK for IA
 – The variety of IA degree programs in a broad international context

• IA community needs an international effort to define a set of educational guidelines
Work supported in part by the National Science Foundation under Grants DUE 1023963 and DUE 1139421. Any opinions, findings, and conclusion or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF.